First principles multielectron mixed quantum/classical simulations in the condensed phase. I. An efficient Fourier-grid method for solving the many-electron problem.
نویسندگان
چکیده
We introduce an efficient multielectron first-principles based electronic structure method, the two-electron Fourier-grid (2EFG) approach, that is particularly suited for use in mixed quantum/classical simulations of condensed-phase systems. The 2EFG method directly solves for the six-dimensional wave function of a two-electron Hamiltonian in a Fourier-grid representation such that the effects of electron correlation and exchange are treated exactly for both the ground and excited states. Due to the simplicity of a Fourier-grid representation, the 2EFG is readily parallelizable and we discuss its computational implementation in a distributed-memory parallel environment. We show our method is highly efficient, being able to find two-electron wave functions in approximately 20 s on a modern desktop computer for a calculation this is equivalent to full configuration interaction (FCI) in a basis of 17 million Slater determinants. We benchmark the accuracy of the 2EFG by applying it to two electronic structure test problems: the harmonium atom and the sodium dimer. We find that even with a modest grid basis size, our method converges to the analytically exact solutions of harmonium in both the weakly and strongly correlated electron regimes. Our method also reproduces the low-lying potential energy curves of the sodium dimer to a similar level of accuracy as a valence CI calculation, thus demonstrating its applicability to molecular systems. In the following paper [W. J. Glover, R. E. Larsen, and B. J. Schwartz, J. Chem. Phys. 132, 144102 (2010)], we use the 2EFG method to explore the nature of the electronic states that comprise the charge-transfer-to-solvent absorption band of sodium anions in liquid tetrahydrofuran.
منابع مشابه
Efficient real-space configuration-interaction method for the simulation of multielectron mixed quantum and classical nonadiabatic molecular dynamics in the condensed phase
We introduce an efficient configuration interaction ~CI! method for the calculation of mixed quantum and classical nonadiabatic molecular dynamics for multiple electrons. For any given realization of the classical degrees of freedom ~e.g., a solvent!, the method uses a novel real-space quadrature to efficiently compute the Coulomb and exchange interactions between electrons. We also introduce a...
متن کاملFirst principles multielectron mixed quantum/classical simulations in the condensed phase. II. The charge-transfer-to-solvent states of sodium anions in liquid tetrahydrofuran.
Gas-phase atomic anions lack bound electronic excited states, yet in solution many of these anions exhibit intense absorption bands due to the presence of excited states, referred to as charge-transfer-to-solvent (CTTS) states that are bound only by the presence of the solvent. CTTS spectra thus serve as delicate probes of solute-solvent interactions, but the fact that they are created by the i...
متن کاملQuantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations
In this paper, we explore in detail the way in which quantum decoherence is treated in different mixed quantum-classical molecular dynamics algorithms. The quantum decoherence time proves to be a key ingredient in the production of accurate nonadiabatic dynamics from computer simulations. Based on a short time expansion to a semiclassical golden rule expression due to Neria and Nitzan @J. Chem....
متن کاملHow Does a Solvent Affect Chemical Bonds? Mixed Quantum/Classical Simulations with a Full CI Treatment of the Bonding Electrons
Understanding how a solvent affects the quantum mechanics and reactivity of the chemical bonds of dissolved solutes is of fundamental importance to chemistry. To explore condensed-phase effects on a simplemolecular solute, we have studied the six-dimensional two-electron wave function of the bonding electrons of the Na2 molecule in liquid argon via mixed quantum/classical simulation. We find th...
متن کاملPhase-space approach to solving the time-independent Schrödinger equation.
We propose a method for solving the time-independent Schrödinger equation based on the von Neumann (vN) lattice of phase space Gaussians. By incorporating periodic boundary conditions into the vN lattice [F. Dimler et al., New J. Phys. 11, 105052 (2009)], we solve a longstanding problem of convergence of the vN method. This opens the door to tailoring quantum calculations to the underlying clas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 132 14 شماره
صفحات -
تاریخ انتشار 2010